C++ ARRAYS NUMBER CONVERSIONS

Problem Solving with Computers-I

General model of memory

- Sequence of adjacent cells
- Each cell has 1-byte stored in it
- Each cell has an address (memory location)

Storing sequences in programs

Write a program to take a sequence of midterm scores (out of 100) and compute the average of the midterm

C++ Arrays

A C++ array is a list of elements that share the same name, have the same data type and are located adjacent to each other in memory

scores

10	20	30	40	50			

Declare:

Exercise: Reassign each value to 60

int scores []$=\{\mathbf{2 0 , 1 0 , 5 0 \} ;} / /$ declare an initialize //Access each element and reassign its value to 60

Exercise: Increment each element by 10

int scores []$=\{20,10,50\} ; / /$ declare an initialize //Increment each element by 10

Most common array piffall- out of bound access

int $\operatorname{arr}[]=\{20,10,50\} ; / /$ declare an initialize
for (int $i=0 ; i<=3 ; i++)$

$$
\text { scores }[i]=\text { scores[i] } 10 ;
$$

Demo: Passing arrays to functions

Tracing code involving arrays

Choose the resulting array after

$\operatorname{arr}[0]$	$\operatorname{arr}[1]$	$\operatorname{arr}[2]$

A.

1	2	3
$\operatorname{arr[0]}$	$\operatorname{arr}[1]$	$\operatorname{arr}[2]$

int $\operatorname{arr}[]=\{1,2,3\}$;
int tmp = arr[0];
$\operatorname{arr}[0]=\operatorname{arr}[2]$;
arr[2] = tmp;
B.

C.

D. None of the above

What is the memory location of each element?

scores | 10 | 20 | 30 | 40 | 50 |
| :--- | :--- | :--- | :--- | :--- |
| | | | | |

int scores []=\{10, 20, 30, 40, 50\};
If the starting location of the array is 0×200, what is memory location of element at index 2 ?
A. 0×201
B. 0×202
C. 0×204
D. 0×208

Converting between binary and decimal

 Binary to decimal: $10110_{2}=?_{10}$Decimal to binary: $34_{10}=?_{2}$

Hex to binary

- Each hex digit corresponds directly to four binary digits
- Programmers love hex, why?
- Convert to binary
$0 \times 25 B=$?

00	0	0000
01	1	0001
02	2	0010
03	3	0011
04	4	0100
05	5	0101
06	6	0110
07	7	0111
08	8	1000
09	9	1001
10	A	1010
11	B	1011
12	C	1100
13	D	1101
14	E	1110
15	F	1111

Hexadecimal to decimal

$25 B_{16}=$? Decimal

Hexadecimal to decimal

- Use polynomial expansion
- $25 \mathrm{~B}_{16}=2 * 256+5^{*} 16+11^{*} 1=512+80+11$

$$
=603
$$

- Decimal to hex: $36_{10}=?_{16}$

Binary to hex: 1000111100

A. 8 FO
B. 23 C
C. None of the above

BIG IDEA: Bits can represent anything!!

Numbers Binary Code
 Colors
 Binary code

Red

Green

Blue

N bits can represent at most 2^{N} things

What is the minimum number of bits required to represent all the letters in the English alphabet (assume only upper case)?
A. 3
B. 4
C. 5
D. 6
E. 26

What is the maximum positive value that can be stored in a byte?
A. 127
B. 128
C. 255
D. 256

BIG IDEA：Bits can represent anything！！

－Logical values？
－ $0 \Rightarrow$ False， $1 \Rightarrow$ True
－colors？
－Characters？
－ 26 letters $\Rightarrow 5$ bits $\left(2^{5}=32\right)$
－upper／lower case＋punctuation $\Rightarrow 7$ bits（in 8）（＂ASCII＂）
－standard code to cover all the world＇s languages $\Rightarrow 8,16,32$ bits（＂Unicode＂） www．unicode．com
－locations／addresses？commands？

r r nra kn imil

$\dot{\vdots}$ ULL

；Ul：LfL bles．
\＆तli F5 thratrynm

－F तीß ？

\therefore I U1：tí Icserigue ratex
$\because \quad$ This

$\therefore-1$ U： 1 ri－derice cotrict 1$)$

Leicheck－icle	De：－－Did har chr	Ler． Hz （06thar \times all
37．：\％רar ab3s：8jat＝	R＇s ar＇ra \＆ 35 s ；	
		9761 － 61 sxi
3.5 ：3 3 74． $4.335 ; 3$		
		1vi $64-44$－ 617 l ：
37 5．5 74． 4.537%		
38 36 Jde＜iku：		
	＇1 4；－6：as？	10．6）－4：＜－17．3：
4038 3.55 \＆ 510 ；	7．AF •17 \＆573：F゙	
1－39 351 ＜ith		
		IUL Gd $-.2<8$
433 SR 1.55		
45 d J3．aisk：		10： $\mathrm{al}^{\text {a }}$
45 S．F． 7.5 F s 516 ；		1＇斤 кт
17 35 357 10		12163 － 27×1
$1830 \mathrm{J6C}$ 人） 40 l ：	$8 \mathrm{C} 56-25$＜idu：	
44 J＿ 161 as49：	U1 $21-21093$ ：	1－： 21 －61＜tilis：
5 C 3．75．：\＆ $5500 \% 2$		
	U4 $34-24$ cis 3 ：	
5.3 3．5 715： 4.553 ；	8． $5.5 \cdot 5$ a 535 ；	17 7：F5－x117；
	u，＇s－i ：4937	1－t $\%$－6：＜t19：
5538178856		1278 7\％－7 ext30：
5739 971＜is\％：		$13175-71$ sxilla
50 3R 77： 4.559 ；		12．：7F－73－x133；
50 3C 97\％＜isou：		12： $7 \mathrm{C}-715 \times 124$ ：
5）3F． 17 f 4 358 ：$=$		127\％7\％ 73 －x136；
53 35 3774		13773

ASCII table

－REMEMBER： N bits \Leftrightarrow at most 2^{N} things

Next time

- Pointers
- Mechanics of function calls - call by value and call by reference

