
PROGRAM COMPILATION
MAKEFILES
Problem Solving with Computers-I

The compilation process
Source code

Source code:
Text file stored on
computers hard disk or
some secondary storage

Compiler

Hardware

Executable:
Program in machine code
+Data in binary

1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

Run Time

hello.cpp g++ a.out

Executable

g++ is composed of a number of smaller programs
• Code written by others (libraries) can be included
• ld (linkage editor) merges one or more object files with the relevant

libraries to produce a single executable

hello.cpp
a.out

3

g++

hello.s
as

cpp

cc1

ld

Library files
e.g.math.o: the
math library

hello.o

Steps in gcc
• Ask compiler to show temporary files:
$ g++ –S hello.cpp
$ g++ –c hello.o
$ g++ –o hello hello.cpp
$ g++ functions.o main.o –o myhello

hello.cpp a.out

g++
hello.s

as

cpp

cc1

ldhello.o

Make and makefiles
• The unix make program automates the compilation process as specified in a

Makefile
• Specifies how the different pieces of a program in different files fit together to make

a complete program
• In the makefile you provide a recipe for compilation
• When you run make it will use that recipe to compile the program

$ make
g++ testShapes.o shapes.o tdd.o -o testShapes

Specifying a recipe in the makefile
• Comments start with a #
• Definitions typically are a variable in all caps

followed by an equals sign and a string, such as:

testShapes is the target - it is what we want to produce
To produce the executable testShapes we need all the .o files
Everything to the right of ":" is a dependency for testShapes

testShapes: testShapes.o shapes.o tdd.o
#The recipe for producing the target (testshapes) is below
g++ testShapes.o shapes.o tdd.o -o testShapes

Demo
• Basics of code compilation in C++ (review)
• Makefiles (used to automate compilation of medium to large projects) consisting of

many files
• We will start by using a makefile to compile just a single program
• Extend to the case where your program is split between multiple files
• Understand what each of the following are and how they are used in program

compilation
• Header file (.h)
• Source file (.cpp)
• Object file (.o)
• Executable
• Makefile
• Compile-time errors
• Link-time errors

External vs. Internal Representation
• External representation:

• Convenient for programmer
• Decimal (base 10)

• Internal representation:
• Actual representation of data
in the computer’s memory:
Always binary (1’s and 0’s)

8

Positional encoding for non-negative numbers
• Each position represents some power of the base

Why is each base important??
9

Binary representation (base 2)
• On a computer all data is stored in binary
• Only two symbols: 0 and 1
• Each position is called a bit
• Bits take up space
• 8 bits make a byte
• Example of a 4-bit number

• Actually the data is voltages

• We use the abstraction:
• High voltage: 1 (true)
• Low voltage: 0 (false)

1015 = ? In decimal

A. 26

B. 51

C. 126

D. 130

11

Converting between binary and decimal

Binary to decimal: 1 0 1 1 02 = ?10

Decimal to binary: 3410=?2

12

Hex to binary
• Each hex digit corresponds directly to

four binary digits
• Programmers love hex, why?

 25B16 = ? In
binary

13

00 0 0000 
01 1 0001 
02 2 0010 
03 3 0011 
04 4 0100 
05 5 0101 
06 6 0110 
07 7 0111 
08 8 1000 
09 9 1001 
10 A 1010 
11 B 1011 
12 C 1100 
13 D 1101 
14 E 1110 
15 F 1111

Hexadecimal to decimal

 25B16 = ? Decimal

14

Hexadecimal to decimal

• Use polynomial expansion

• 25B16 = 2*256 + 5*16 + 11*1 = 512 + 80 + 11

 = 603

• Decimal to hex: 3610=?16

15

Binary to hex: 1000111100 
A. 8F0

B. 23C

C. None of the above

16

BIG IDEA: Bits can represent anything!!

 Numbers Binary Code

0
1
2
3

How many (minimum) bits are required to represent the numbers 0 to 3?

BIG IDEA: Bits can represent anything!!

Red

Green

Blue

 Colors Binary code

How many (minimum) bits are required to represent the three colors?

BIG IDEA: Bits can represent anything!!

 Characters

‘a’
‘b’
‘c’
‘d’
‘e’

N bits can represent at most 2N things

What is the minimum number of bits required to represent
all the letters in the English alphabet in lower case?

A. 3

B. 4

C. 5

D. 6

E. 26

BIG IDEA: Bits can represent anything!!

• Logical values?
• 0 ⇒ False, 1 ⇒ True

• colors ?

• Characters?
• 26 letters ⇒ 5 bits (25 = 32)
• upper/lower case + punctuation  

 ⇒ 7 bits (in 8) (“ASCII”)
• standard code to cover all the world’s languages ⇒ 8,16,32 bits (“Unicode”)  
www.unicode.com

• locations / addresses? commands?

• MEMORIZE: N bits ⇔ at most 2N things

Red

Green

Blue

What is the maximum positive value that
can be stored in a byte?

A. 127

B. 128

C. 255

D. 256

22

Data types
Binary numbers in memory are stored using a finite, fixed
number of bits typically:
 8 bits (byte)
 16 bits (half word)
 32 bits (word)
 64 bits (double word or quad)

Data type of a variable determines the:
• exact representation of variable in memory
• number of bits used (fixed and finite)

• range of values that can be correctly represented

23

Next time

• Arrays

