
MORE FUNCTIONS
MAKEFILES
RUNTIME STACK
Problem Solving with Computers-I

How difficult do you find the course so far?
A. Too easy
B. Easy, I sail through the labs with little effort
C. Moderately easy/difficult – I have to apply concepts and can complete the

labs and homeworks with moderate effort
D. I understand the material but my partner does everything --- I don’t really

have the confidence to code.
E. I am really struggling and feel underprepared for this class

Writing code that works - its not magic :)

s = drawTriangle(5);
cout<<s;

 *

Write a function that RETURNS a string representing

an isosceles triangle with a given width

The compilation process
Source code

Source code:
Text file stored on
computers hard disk or
some secondary storage

Compiler

Hardware

Executable:
Program in machine code
+Data in binary

1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

Run Time

hello.cpp g++ a.out

Executable

g++ is composed of a number of smaller programs
• Code written by others (libraries) can be included
• ld (linkage editor) merges one or more object files with the relevant

libraries to produce a single executable

hello.cpp
a.out

5

g++

hello.s
as

cpp

cc1

ld

Library files
e.g.math.o: the
math library

hello.o

Steps in gcc
• Ask compiler to show temporary files:
$ g++ –S hello.cpp
$ g++ –c hello.o
$ g++ –o hello hello.cpp
$ g++ functions.o main.o –o myhello

hello.cpp a.out

g++
hello.s

as

cpp

cc1

ldhello.o

Make and makefiles
• The unix make program automates the compilation process as specified in a

Makefile
• Specifies how the different pieces of a program in different files fit together to make

a complete program
• In the makefile you provide a recipe for compilation
• When you run make it will use that recipe to compile the program

$ make
g++ testShapes.o shapes.o tdd.o -o testShapes

Specifying a recipe in the makefile
• Comments start with a #
• Definitions typically are a variable in all caps

followed by an equals sign and a string, such as:

testShapes is the target - it is what we want to produce
To produce the executable testShapes we need all the .o files
Everything to the right of ":" is a dependency for testShapes

testShapes: testShapes.o shapes.o tdd.o
#The recipe for producing the target (testshapes) is below
g++ testShapes.o shapes.o tdd.o -o testShapes

Demo
• Basics of code compilation in C++ (review)
• Makefiles (used to automate compilation of medium to large projects) consisting of

many files
• We will start by using a makefile to compile just a single program
• Extend to the case where your program is split between multiple files
• Understand what each of the following are and how they are used in program

compilation
• Header file (.h)
• Source file (.cpp)
• Object file (.o)
• Executable
• Makefile
• Compile-time errors
• Link-time errors

The runtime Stack
Stack: A region in program memory to “manage” local variables
Every time a function is called, its local variables are created on the stack
When the function returns, local variables are removed from the stack
Local variables are created and deleted on the stack using a Last in First Out principle

int sum(int a, int b){
 cout<< a+b;
}
int main(){
 int result =0;
 int x =10, y =20;
 result = sum(x, y);
 cout<<result;
}

Print vs return
What is the output of the following code
int sum(int a, int b){
 return a+b;
}
int main(){
 int result =0;
 int x =10, y =20;
 result = sum(x, y);
 cout<<result;
}

Function call mechanics
What is the output of the following code
int sum(int a, int b){
 int result= a+b;
 exit(0);
}

int main(){
 int result =0;
 int x =10, y =20;
 result = sum(x, y);
 cout<<result;
}

Next time
• Files

