
 
RECURSION

Problem Solving with Computers-I 6

10

40

12

32 4743

45 41

Let recursion draw you in….

• Identify the “recursive structure” in these pictures by describing them

Understanding recursive structures
• Recursive names: The pioneers of open source and free software

used clever recursive names

GNU is NOT Unix
• Recursive structures in fractals

Zooming into a Koch’s snowflake

Sierpinski triangle

A
qq.us yy a.q y µ

Why is recursion important in Computer Science

Tool for solving problems (recursive algorithms)

To wash the dishes in the sink:

Wash the dish on top of the stack

If there are no more dishes

you are done!

 Else:

 Wash the remaining dishes in the sink

Recursive algorithms provide describe the solution
to theproblem

in terms ofitself

Thekeyideaistoiessolutionstosmallerversi

l

syanerinpa

F7otm.ino qm
1 Recursivestep

A new way of looking at inputs

Arrays:

• Non-recursive description: a sequence of elements

• Recursive description: an element, followed by a smaller array

16,011101501100
one element smaller array

Recursive description of a linked list

50 20 4010

head

• Non-recursive description of the linked list: chain of nodes

• Recursive description of a linked-list: a node, followed by a smaller
linked list

0tE

Designing recursive code: print all the elements of an array

Arrays:

• Recursive description: an element, followed by a smaller array

void printArray int arrs int ten

if ten o Base case Solve the problem

return for thesmallest
valid input

1 To write the recursive step Assume the functionword
11 for any input smaller than

ten This means we canjustprint

one element call printArray to print the REST ofthearray

contcc arrco cc

print Array
a

p in therestofthe
array

Designing recursive code: sum elements in a linked-list

50 20 4010

head

• Recursive description of a linked-list: a node, followed by a smaller
linked list

Next lecture

What’s in a base case?

50 20 4010

head

double sumList(Node* head){

double sum = head->value + sumList(head->next);
 return sum;

}

What happens when we execute this code on the
example linked list?
A. Returns the correct sum (120)
B. Program crashes with a segmentation fault
C. Program runs forever
D. None of the above

Examples of recursive code

4050 2010

head

double sumList(Node* head){
 if(!head) return 0;

double sum = head->value + sumList(head->next);

 return sum;
}

Find the min element in a linked list

double min(Node* head){
 // Assume the linked list has at least one node

 assert(head);
// Solve the smallest version of the problem

}
See code written in lecture for the complete solution

Helper functions
• Sometimes your functions takes an input that is not easy to recurse on
• In that case define a new function with appropriate parameters: This is

your helper function
• Call the helper function to perform the recursion

For example

double sumLinkedLisr(LinkedList* list){
 return sumList(list->head); //sumList is the helper
 //function that performs the recursion.

}

Next time
• Advanced problems with strings and recursion
• Final practice

