
THE GOOD, BAD AND UGLY
ABOUT POINTERS

Problem Solving with Computers-I

▪ ar is like a pointer to the first element
▪ ar[0] is the same as *ar
▪ ar[2] is the same as *(ar+2)

ar

 100 104 108 112 116

20 30 50 80 90

▪ Use pointers to pass arrays in functions
▪ Use pointer arithmetic to access arrays more conveniently

The good: Pointers pass data around efficiently
Pointers and arrays

Pointer Arithmetic
int arr[]={50, 60, 70};
int *p;
p = arr;
p = p + 1;
*p = *p + 1;

Which of the following is true after IncrementPtr(q)is called
in the above code:

void IncrementPtr(int *p){
 p++;
}

50 60 70
arr

qint arr[3] = {50, 60, 70};
int *q = arr;
IncrementPtr(q);

A. ‘q’ points to the next element in the array with value 60
B. ‘q’ points to the first element in the array with value 50

How should we implement IncrementPtr(),so that ‘q’ points to 60
when the following code executes?
void IncrementPtr(int **p){
 p++;
}

50 60 70
arr

qint arr[3] = {50, 60, 70};
int *q = arr;
IncrementPtr(&q);

A. p = p + 1;
B. &p = &p + 1;
C. *p= *p + 1;
D. p= &p+1;

Review of homework 7, problem 4
void printRecords(UndergradStudents records [], int numRecords);

These are the student records:
ID# 1, Shmoe, Joe, Major: EE, Average GPA: 3.60
ID# 2, Chen, Macy, Major: CS, Average GPA: 3.95
ID# 3, Peter, Patrick, Major: ME, Average GPA: 2.77

Expected output

int main(){
 UndergradStudents ug[3];
 ug[0] = {"Joe", "Shmoe", "EE", {3.8, 3.3, 3.4, 3.9} };
 ug[1] = {"Macy", "Chen", "CS", {3.9, 3.9, 4.0, 4.0} };
 ug[2] = {"Peter", "Patrick", "ME", {3.8, 3.0, 2.4, 1.9} };
 printRecords(ug, 3);  
}

Pointer Arithmetic
▪What if we have an array of large structs (objects)?
▪C++ takes care of it: In reality, ptr+1 doesn’t add 1 to the

memory address, but rather adds the size of the array
element.
▪C++ knows the size of the thing a pointer points to – every

addition or subtraction moves that many bytes: 1 byte for a
char, 4 bytes for an int, etc.

The bad? Using pointers needs work!

1) A pointer can only point to one type –(basic or derived) such as int,
char, a struct, another pointer, etc

2) After declaring a pointer: int *ptr;

 ptr doesn’t actually point to anything yet.
 We can either:

➢make it point to something that already exists, OR

➢allocate room in memory for something new that it will point to

The ugly: memory errors!
9

“The overwhelming majority of program bugs and computer crashes
stem from problems of memory access... Such memory-related
problems are also notoriously difficult to debug. Yet the role that
memory plays in C and C++ programming is a subject often
overlooked…. Most professional programmers learn about memory
entirely through experience of the trouble it causes.”
 …. Frantisek Franek
 (Memory as a programming concept)

Pointer pitfalls and memory errors
• Segmentation faults: Program crashes because it

attempted to access a memory location that either
doesn’t exist or doesn’t have permission to access

• Examples
• Out of bound array access
• Dereferencing a pointer that does not point to

anything results in undefined behavior.

int arr[] = {50, 60, 70};

for(int i=0; i<=3; i++){
cout<<arr[i]<<endl;

}

int x = 10;
int* p;
cout<<*p<<endl;

Next time
• C++ Memory Model
• Dynamic memory allocation

