
STRUCTS 
REFERENCES 
POINTERS (REVIEW)

Problem Solving with Computers-I

Pointer assignment

Q: Which of the following pointer diagrams best represents the outcome of the above code?

2

int *p1, *p2, x;
p1 = &x;
p2 = p1;

A.

x
B.

x

C. Neither, the code is incorrect

p1

p2

p1 p2

C++ structures (lab05)
A struct is a data structure composed of simpler data types.

struct Point {
 double x; //member variable of Point
 double y; //member variable of Point
};

Think of Point as a new data type

Point p1; // Declare a variable of type Point
Point p1 = { 10, 20}; //Declare and initialize

C++ structures (lab05)
• A struct is a data structure composed of simpler data types.
struct Point {
 double x; //member variable of Point
 double y; //member variable of Point
};
• Access the member variables of p1 using the dot ‘.’ operator

Point p1;
p1.x = 5;
p1.x = 10;

• Access via a pointer using the -> operator

Point* q = &p1;
(*q).x = 5;
(*q).x = 10;

Which of the following is/are incorrect statement(s) in C++?

A.ul.x = 10;
B.Box b1 = {{500, 800}, 10, 20};
C.Box b1, b2; b1.ul = {500, 800};
D.A and C
E.None of the above are incorrect

struct Box {
 Point ul; // upper left corner

 double width;
 double height;
};

struct Point {
 double x;
 double y;
};

Passing structs to functions
▪Write a function that prints the x and y coordinates of a Point
▪Write a function that takes a Point as parameter and initializes its x
and y coordinates

References in C++
int main() {
 int d = 5;
 int &e = d;
}

A reference in C++ is an alias for
another variable

7

References in C++
int main() {
 int d = 5;
 int & e = d;
 int f = 10;
 e = f;

}

How does the diagram change with this code?

C. 10

10
d:
e:

10f:

A. B.
5

10

D. Other or error

8

d:
e:
f:

d:

e:
f:

int a = 5;
int & b = a;
int* pt1 = &a;

What are three ways
to change the value of
‘a’ to 42?

9

Pointers and references: Draw the diagram for this code

Call by reference: Modify to correctly swap a and b
void swapValue(int x, int y){
 int tmp = x;
 x = y;
 y = tmp;
}
int main() {

 int a=30, b=40;

 swapValue(a, b);

 cout<<a<<" "<<b<<endl;

}

Passing structs to functions by reference
▪Write a function that takes a Point as parameter and initializes its x
and y coordinates

▪ ar is like a pointer to the first element
▪ ar[0] is the same as *ar
▪ ar[2] is the same as *(ar+2)

ar

 100 104 108 112 116

20 30 50 80 90

▪ Use pointers to pass arrays in functions
▪ Use pointer arithmetic to access arrays more conveniently

Arrays and pointers

Pointer Arithmetic
int arr[]={50, 60, 70};
int *p;
p = arr;
p = p + 1;
*p = *p + 1;

Which of the following is true after IncrementPtr(q)is called
in the above code:

void IncrementPtr(int *p){
 p++;
}

50 60 70
arr

qint arr[3] = {50, 60, 70};
int *q = arr;
IncrementPtr(q);

A. ‘q’ points to the next element in the array with value 60
B. ‘q’ points to the first element in the array with value 50

How should we implement IncrementPtr(),so that ‘q’ points to 60
when the following code executes?

void IncrementPtr(int **p){
 p++;
}

50 60 70
arr

qint arr[3] = {50, 60, 70};
int *q = arr;
IncrementPtr(&q);

A. p = p + 1;
B. &p = &p + 1;
C. *p= *p + 1;
D. p= &p+1;

Two important facts about Pointers
16

1) A pointer can only point to one type –(basic or derived) such as int,
char, a struct, another pointer, etc

2) After declaring a pointer: int *ptr;

 ptr doesn’t actually point to anything yet.
 We can either:

➢make it point to something that already exists, OR

➢allocate room in memory for something new that it will point to

➢Null check before dereferencing

Pointer Arithmetic
▪What if we have an array of large structs (objects)?
▪C++ takes care of it: In reality, ptr+1 doesn’t add 1 to the

memory address, but rather adds the size of the array
element.
▪C++ knows the size of the thing a pointer points to – every

addition or subtraction moves that many bytes: 1 byte for a
char, 4 bytes for an int, etc.

Pointer pitfalls
• Dereferencing a pointer that does not point to anything results in undefined

behavior.
• On most occasions your program will crash
• Segmentation faults: Program crashes because code tried to access memory

location that either doesn’t exist or you don’t have access to

Pointer assignment and pointer arithmetic: Trace the code

19

int x=10, y=20;

int *p1 = &x, *p2 =&y;

p2 = p1;

int **p3;

p3 = &p2;

Pointer Arithmetic Question

How many of the following are invalid?
I. pointer + integer (ptr+1)
II. integer + pointer (1+ptr)
III. pointer + pointer (ptr + ptr)
IV. pointer – integer (ptr – 1)
V. integer – pointer (1 – ptr)
VI. pointer – pointer (ptr – ptr)
VII. compare pointer to pointer (ptr == ptr)
VIII. compare pointer to integer (1 == ptr)
IX. compare pointer to 0 (ptr == 0)
X. compare pointer to NULL (ptr == NULL)

#invalid
 A: 1
 B: 2
 C: 3
 D: 4
 E: 5

Next time
• Arrays of structs
• Dynamic memory allocation

